My Blog List

Amazon Widget

Search This Blog

Tuesday, June 16, 2020

Factorizing using Difference of Squares Identity

 Difference of Squares Identity:

  a2 – b2 = (a – b )(a + b)

  

Factorization using Difference of squares Identity

1) 16x– 36y2

Answer:

In the given expression : 16x– 36y2

There are two variables: x , y . The expression has two terms,which are Perfect squares and the sign is Negative. 

1st term , a=  16 x ; a = 4x

2nd term, b2 = 36y2  ; b = 6y                  

Here, the middle term is not their ,

By using the Difference of Squares Identity: a2 – b2 = (a – b )(a + b)

Therefore, factorization of 16x– 36y2

                                       = (4x) - (6y)2    

                                       = ( 4x + 6y ) ( 4x – 6y).

 

2) 1 – 25(2a – 5b)2

Answer:

In the given expression: 1 – 25(2a – 5b)2

The number of terms = 2 ,which are perrfect squares and the sign is Negative.

1st term: a2 = 1 ; a = 1

2nd term: b=  25(2a – 5b)2 ;

              b = (5)2 (2a – 5b)2 = ( 5( 2a – 5b))2 = ( 10a – 25b )2

Here,also Middle term is not their.

By using the Difference of Squares Identity: a2 – b2 = (a + b) (a – b )

Therefore, factorization of :  1 – 25(2a – 5b) = 12 – ( 10a – 25b)2

                                       =  ( 1 + 10a – 25b )( 1 – (10a - 25b))

                                        = ( 1 + 10a – 25b) ( 1 – 10a + 25b).

 

3) m2/n2 - 36        

Answer:

The given expression: m2/n2 - 36 , is a perfect square expression and has two terms,no middle term ; with Negative sign.

1st term: a2 = m2/n2  ; a = m/n  

2nd term: b2 = 36 ; b = 6

The given expression: m2/n2 – 36 ; is in the form of :

a2 – b2 = (a + b) (a – b ).

Therefore , factorization of : m2/n2 – 36

                                            =  (m/n)2 - 62

                                         = ( m/n + 6 )(m/n – 6 ).  


4) (x – 2)2 – ( x – 3)2

Answer:

The given expression: (x – 2)2 – ( x – 3)2 ; is a perfect square form and it is in the form of : a2 – b2 = (a + b) (a – b ).

Here, a2 =  (x – 2 )2 ; a = (x – 2 )

          b2 = (x – 3 )2 ; b = ( x – 3 )

Therefore, factorization for: (x – 2)2 – ( x – 3)2

 = ( (x–2) + ( x–3) ) ( (x - 2) – (x – 3) ; solving the terms in brackets

 = ( x -2 + x – 3 ) ( x- 2 – x + 3)

 = ( 2x -5) ( 1)

 = ( 2x – 5 ).                                     

 

5) 25(x+y)2 – 36(x- 2y)2                                            

Answer:

The given expression: 25(x+y)2 – 36(x- 2y)2 , is a perfect square form.The expression is written as : 52(x+y)2 – 62(x -2y)2 = ( 5(x+y))2 – ( 6(x – 2y))2 ; which is in the form of:  : a2 – b2 = (a + b) (a – b ).

Here, a2 =  (5(x+y))2 ; a = 5(x+y) = 5x + 5y

          b2 = (6(x-2y))2 ; b = 6(x-2y) = 6x – 12y

Therefore, factorization of :  25(x+y)2 – 36(x- 2y)2

 = (( 5x+5y) + (6x-12y)) (( 5x+5y) - (6x-12y))    

 = ( 5x+5y+6x-12y) (5x+5y – 6x + 12y)

 = ( 11x – 7y) ( -x + 17y)

 = ( 11x – 7y) ( 17y – x ).

 

6) x3 – 25x

Answer:

We need to change the given expression in to Perfect square form.

Here, We take ‘x’ as common from the expression : x3 – 25x , as it change into Perfect square. Therefore, x3 – 25x = x( x2 – 25).

The new expression is: x( x2 – 25) , it is again written as: x( x2 – 52 ).

The expression in the brackets, i.e: ( x2 – 52 ) is in the form of :

 a2 – b2 = (a + b) (a – b ).

Here, a2 = x2 ; a = x

          b2 = 52 ; b = 5

Therefore , factorization of : x3 – 25x

= x( x2 – 52 )

= x ( x+ 5 ) ( x – 5 ).

 

7) 3t2 – 27g2

Answer:

Here, also we have to take 3 as common from the expression 3t2 – 27g2 , to make it into Perfect square form.

The new expression is : 3 ( t2 – 9g2 )

  = 3 (t2 – (3g)2 )  ;  since 9g2 = 3g * 3g = (3g)2    

Hence,the expression: (t2 – (3g)2 ); is in the form of :

 a2 – b2 = (a + b) (a – b ).

Here, a2 = t2 ; a = t

          b2 = 3g2 ; b = 3g

Therefore, factorization of : 3t2 – 27g2

= 3 (t2 – (3g)2

= 3 ( t + 3g) ( t – 3g). 


Factorising using Squares of Binomial Identity

Square of a Binomial:

i) (a + b)2 = a2 + 2 * a * b +  b2 = a2 + 2 ab + b2 

                  = (a + b)( a + b) .

                           (or)

ii)    (- a – b )2 =  a2 + 2 * a * b + b2. =  a2  + 2 ab + b2   

                       =  (a + b) ( a + b).

iii)  (a – b)2  =  a2 – 2* a * b + b2  =  a2 – 2ab + b2  

                      =  ( a – b ) ( a – b ).    

Note : The quadratic equation or binomial  ax2 + bx + c is a perfect square ; if b= 4ac.


Factorize the expressions using Identities:

1)      4x2 + 12xy + 9y2

Answer:

In the given expression 4x2 + 12xy + 9y

There are two variables: x , y and has three terms.1st , rd  terms are  Perfect squares.

The middle term has Positive sign.

1st  term : a2 = 4x2  ; a = 2x

rd  term : b= 9y2  ; b = 3y

Middle term (12xy)  = 2  *  1st term  * rd term = 2 * a * b

                      = 2 * 2x * 3y   = 12xy

By using the Square of Binomial Identity : 

(a + b ) =  a2 + 2 ab + b2  =  (a + b) ( a + b)

Therefore, factorization of : 4x2 + 12xy + 9y2

                                        = ( 2x + 3y ) 2

                                         = (2x + 3y) ( 2x + 3y).      

  

 2)      4x– 4x + 1

Answer:

In the given expression  4x– 4x + 1

There are two variables: x , y and has three terms.1st , rd  terms are  Perfect squares.

The middle term has Negative sign. 

1st term a2 = 4x2  ; a = 2x

3rd termb2 = 1; b = 1.

Middle term, (- 4x ) =  - 2 * 2x 1  =  - 4x  = 2 ab

By using the Square of Binomial Identity :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Therefore, factorization of 4x– 4x + 1

      = ( 2x – 1 )2   

      =  ( 2x - 1 ) ( 2x - 1).

 

3 ) w2 – 2w/x + 1/ x2

Answer:                                                   

The given expression is written as : w2 – 2w/x + 1/ x2 ;also 1st , rd  terms are  Perfect squares . The middle term has Negative sign. The expression is written as:

= w2 – 2 * w * 1/x + (1/x)2 ; it is in the form of :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Here, a = w , b = 1/x , ab = w/x ; 2 ab = 2w/x.

Therefore ; factorization of :w2 – 2w/x + 1/ x2

= ( w – 1/x)2

= ( w – 1/x)( w - 1/x) .

 

4) 1/t2 – 8/t + 16

 Answer:

The given expression is written as: 1/t2 – 8/t + 16 ;also 1st , rd  terms are  Perfect squares . The middle term has Negative sign. The expression is written as:

= 1/t2 – 2 * 1/t * 4 + 42  ; it is in the form of :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Here, a = 1/t ; b = 4 ; ab = 4/t ; 2 ab = 8/t .

Therefore ; factorization of : 1/t2 – 8/t + 16

= ( 1/t – 4 )2

= (1/t – 4)( 1/t – 4).

 

5) p2 + 169 +26p   

Answer:

The given expression is written as: p2 + 169 +26p ;rearranged as : p2 + 26p + 169     

In the given expression :1st , rd  terms are  Perfect squares . The middle term has Positive sign. The expression is written as:

= p2 + 2 *p * 13 + 132 ; it is in the form of :

(a + b ) =  a2 + 2 ab + b2  =  (a + b) ( a + b)

Here, a = p ; b = 13 ; ab = 13p ; 2ab = 26p.

Therefore; factorization of : p2 + 169 +26p   

= ( p + 13 )2

= ( p + 13 ) ( p + 13 ).



6) (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2          

Answer:

In this expression : (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2        

The number of terms are Three ,1st and 3rd terms are Perfect squares . The middle term has Positive sign.The expression is in the form of : a2 + 2 ab + b

1st term, a2 =  ( 3a – 5b )2 ; a = (3a – 5b)

3rd term, b2 = ( 2b – a )2 ; b =  ( 2b – a )

Middle term : 2 ab =  2 (3a – 5b)(2b –a)

By using the Square of Binomial Identity : 

(a + b ) =  a2 + 2 ab + b = ( a + b )( a + b )

Solving : ( a + b ) = (( 3a – 5b ) + ( 2b – a )) ,

                             = ( 3a – 5b + 2b – a ) = (2a – 3b )

Therefore, factorization of : (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2

                                        =  ( ( 3a – 5b ) + ( 2b – a ) ) ;it is in the form:  ( a + b)2  

                                  =  ( 2a – 3b )2    ;   since : ( a + b = 2a - 3b )

                              =  (2a – 3b ) ( 2a – 3b) .     



Factorizing using Cubes of Trinomial Identity

 CUBES OF TRINOMIAL IDENTITY :

 a3 + b3 + c3 = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca ) +  3abc  .

 If  ( a + b + c ) = 0 ; then a3 + b3 + c3 = 3 abc .


 Factorize the expressio using Algebraic Identities:

1)  ( a - b)3 + ( b – c )3 + ( c – a )3

Answer:

The given expression: ( a - b)3 + ( b – c )3 + ( c – a )3 ; is in the form of  : a3 + b3 + c3

Here;  a = a – b ; b = b – c ; c = c – a .

By using the Cubes of Trinomial Identity :

a3 + b3 + c3 = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca ) +  3abc ;

 If a + b + c = 0 ,then  a3 + b3 + c3 = 3 abc

substituting  a, b , c values in the above Identity we get:

a + b + c = a – b +  b – c + c – a  = 0; 

( a - b)3 + ( b – c )3 + ( c – a )3

=  0 + 3 ( a-b)*( b-c) * (c-a)

= 3 (a-b)(b-c)(c-a). 


2)  x3 + y3 - 3xy +1.

Answer:

The given expression : x3 + y3 - 3xy +1 , can be re-write as;

= x3 + y3 + 13 – 3* x * y * 1 ; which is in the form of

a3 + b3 + c3 – 3abc = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca )

Here, a =x ; b = y ; c = 1 ; a2  = x2  ; b2 = y2 ; c2 = 1 ; ab= xy ; bc = y ; ca = x

Therefore ;  x3 + y3 + 1 – 3 xy

= ( x + y + 1 ) (x2 + y2 + 1 – xy – y – x )

= ( x + y + 1 ) (x2 + y2 – xy –y – x + 1).

 

3) 8x3 + 27y3 – 90xy + 125

Answer:

The given expression : 8x3 + 27y3 – 90xy + 125 , can be rewrite as :

=   8x3 + 27y3 + 125 – 90xy

=  ( 2x)3  + ( 3y)3 + 53  - 3 * 2x * 3y * 5 ; which is in the form of

a3 + b3 + c3 – 3abc = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca )

Here, a = 2x ; b = 3y ; c= 5 ; a2 = 4x2 ; b2 = 9y2 ; c2 = 25

ab = 6xy ; bc = 15y ; ca = 10x.

Therefore ;  8x3 + 27y3 + 125 – 90xy

= ( 2x + 3y + 5 )( 4x2 + 9y2 + 25 – 6xy – 15y – 10x)

= ( 2x + 3y + 5 )( 4x2 + 9y2  - 6xy – 15y – 10x + 25 ).


Monday, June 15, 2020

Factorization using Squares of Trinomial Identities.

 Squares of Trinomial Identities :

 i) ( a + b + c )2  = a2 + b2 + c2 + 2 ab + 2 bc + 2 ca .

ii) ( a + b – c )2   = a2 + b2 + c2 + 2 ab  - 2 bc – 2 ca .

iii) ( a – b – c )2  =  a2 + b2 + c2  - 2 ab + 2 bc – 2 ac.

iv) ( - a + b + c )2 =  a2 + b2 + c2 -  2ab  + 2 bc – 2 ac.

v) (  a – b  +  c )2  =  a2 + b2 + c2 -  2ab  - 2 bc + 2 ac.


1. Factorize:  2x + y + 8z2 - 2 √2 xy + 4 √2 yz – 8zx

Answer:

In the given expression 2x + y + 8z2 - 2 √2 xy + 4 √2 yz – 8zx

The number of variables are three : x , y ,z

By using the Square of a Trinomial Identity :

(i) (a – b – c )2 =   a2 + (-b)+ ( -c)2  + 2 * a * (-b) + 2 * ( -b) * (-c) + 2 * a * (-c)

                   =  a+ b2 + c2  - 2 ab + 2 bc – 2 ac.    

                            (or)

(ii) ( - a + b + c )2  =  a2 + b2 + c-  2ab  + 2 bc – 2 ac.

Here, we can use either of the identity. When we use this identity

( a – b – c )2  =  a2 + b2 + c2  - 2 ab + 2 bc – 2 ac , the result is:

1st term   : a2 = 2x2    ;     a = √2  x

2 nd term : b2  =  - 1 y2 ; b =  - y

3rd term : c2 =  - 8z ;   c = - 2√2  z

4th term : 2ab = 2 * (√2  x) * (-y) =  - 2 √2  xy

5th term : 2bc = 2 * ( - y ) * (- 2√2  z ) =  4√2  yz

6th term : 2ac = 2 *  √2  x * (- 2√2  z ) =  - 8zx

Therefore , the expression  :  

2x + y + 8z2 - 2√2  xy + 4√2  yz – 8zx  is written as:

= (√2  x  - y - 2√2  z )2

= (√2  x  - y - 2√2  z)(√2  x  - y - 2√2  z)

    

                                 (OR)

The  expression  2x + y + 8z2 - 2 √2 xy + 4 √2 yz – 8zx  is factorized in other way, when we use this identity : (- a + b + c )2  =  a2 + b2 + c-  2ab  + 2 bc – 2 ac , to Factorize the given expression:  2x + y + 8z2 - 2 √2 xy + 4 √2 yz – 8zx , the result is:

1st term   : a2 =  -2x2    ;     a =  - √2  x

2 nd term : b2  =  1 y2 ; b =   y

3rd term : c2 =  8z ;   c =  2√2  z

4th term : 2ab = 2 * (-√2  x) * (y) =  - 2 √2  xy

5th term : 2bc = 2 * (  y ) * ( 2√2  z ) =  4√2  yz

6th term : 2ac = 2 * ( - √2  x) * ( 2√2  z ) =  - 8zx

Therefore , the expression  :  

2x + y + 8z2 - 2√2  xy + 4√2  yz – 8zx , is factorized as:

 = ( -√2  x  + y + 2√2  z )2

= (√2  x + y + 2√2  z)( - √2  x + y + 2√2  z).


2) k2 - 18k + 1/k2 – 18/ k + 83.

Answer:

The given expression: k2 - 18k + 1/k2 – 18/ k + 83 is rearranged as: keeping the square terms at one side; k2 + 1/k2 – 18k – 18/ k + 83.

= k2 + 1/k2 – 18k – 18/ k + 81 + 2     ( as we can write  83 = 81 + 2 )         

= k2 + 1/k2 + 81 – 18k – 18/k + 2

= k2 + 1/k2 + 92 – (2 * k * 9 ) – (2 * 9 * 1/k) +( 2 * k * 1/k) ; rearranged as:

= k2 + 1/k2 + 92 + ( 2 * k * 1/k) – (2 * 1/k * 9) – (2 * k * 9 )

By seeing the above expression ; 5th term and 6th term has Negative signs. So, we can say that the

3rd term has negative sign in the expression. Therefore;

= k2 + 1/k2 + (- 9 )2 + ( 2 * k * 1/k) – (2 * 1/k * 9) – (2 * k * 9 ) ; which is in the form of Square of Trinomials Identity:  ( a + b – c )2  = a2 + b2 + c2 + 2 ab  - 2 bc – 2 ca .

Here, a = k ; b = 1/k ; c= -9 ; 2 ab = 2 ; 2 bc = -18 / k ; 2 ca = -18k .

= ( k + 1/k -9)2

= (k + 1/k -9) (k + 1/k -9) . 



3) m2 + n2 -2mn – 6n  + 6m + 9

Answer:

The expression m2 + n2 -2mn – 6n  + 6m + 9 , is written as:

 m2 + n2 -2mn – 6n  + 6m + 32 , writing the squared terms at one place and rearranging the expression.   

=  m2 + n2 + 32 – 2mn - 6n + 6m ;

 Here, the 4th term and 5th term has Negative sign.By this we can say 2nd term must be Negative term .The expression  m2 + n2 + 32 – 2mn - 6n + 6m ; is written as:

= m2 + (- n )2 + 32 + ( 2 * m * ( -n))  + (2 * (-n) * 3) + ( 2 * m * 3)    

which is in the form of  Square of Trinomial :

 ( a – b  + c )2  =  a2 + b2 + c2  - 2 ab  -  2 bc + 2 ac.

Here, a = m ; b = -n ; c = 3 ; 2ab = - 2mn ; 2 bc = - 6n ; 2 ca = 6m .

Therefore: m2 + n2 + 32 – 2mn - 6n + 6m = ( m – n + 3 )2

= ( m – n + 3 ) ( m – n + 3 ).

 

4)  x2 + y2 + 2xy + 1/ z2 + 2y / z + 2x / z

Answer: Re- arranging the expression :

x2 + y2  + 1/ z2 + 2xy + 2y / z + 2x / z .

Here , a= x ; b= y ; c = 1 / z

2 ab = 2 * x * y = 2 xy

2 bc = 2 * y * 1 / z = 2y / z

2 ca = 2 * 1/z * x = 2x / z

By using the Square of Trinomial Identity: ( a + b + c )2 = a2 + b2 + c2 + 2 ab + 2 bc + 2 ca

The given expression x2 + y2 + 2xy + 1/ z2 + 2y / z + 2x / z , is written as

= ( x + y + 1 /z )2

= ( x + y + 1/z )( x + y + 1/z ).    


5)  ( 3x – 2y – z )2

Answer:

The given expression ( 3x – 2y – z )2 ,is in the form of  : ( a – b – c )2

We know that : ( a – b – c )2 = a2 + b2 + c2  - 2 ab + 2 bc  -  2 ca .

Here,   a = 3x ; b = (-2y) ; c= (-z)

Therefore,  ( 3x - 2y – z )2 = ( 3x + ( -2y) + ( -z) )2

 = (  (3x)2 + ( -2y)2 + ( -z)2 + 2* 3x * ( -2y) +  2 * ( -2y) * ( -z) + 2 * ( -z) * ( 3x) )

=  9x2 + 4y2  + z2  - 12xy + 4yz – 6zx .

 

6) Simplify a+ b+c =25 and ab + bc + ca = 59. Find the value of  a2 + b2 + c2  ?

Answer:

The data given in the Problem is : a + b + c = 25 ;

Squaring the equation both sides, we get:

 (a + b + c)2  = 252   ; L.H.S is in the form of Square of Trinomial.

We know : (a + b + c)2  =   a2 + b2 + c2  + 2 ab + 2 bc  + 2 ca

 a2 + b2 + c2  + 2 ab + 2 bc  + 2 ca  =  625   ; (expanding L.H.S)

 a2 + b2 + c2  + 2 ( ab + bc + ca ) = 625        ; ( taken 2 as common in L.H.S )

 a2 + b2 + c2  + 2 ( 59 ) = 625         ;        (  Substituting:   ab + bc + ca = 59 )

 a2 + b2 + c2  +  118 = 625

 a2 + b2 + c2   =  625 – 118

Therefore ,  a2 + b2 + c2   =  507 .   



Education Related Books

Society and Social Sciences Books

Maps and Atlases Books

Textbooks and Study Guides