My Blog List

Amazon Widget

Search This Blog

Tuesday, June 16, 2020

Factorising using Squares of Binomial Identity

Square of a Binomial:

i) (a + b)2 = a2 + 2 * a * b +  b2 = a2 + 2 ab + b2 

                  = (a + b)( a + b) .

                           (or)

ii)    (- a – b )2 =  a2 + 2 * a * b + b2. =  a2  + 2 ab + b2   

                       =  (a + b) ( a + b).

iii)  (a – b)2  =  a2 – 2* a * b + b2  =  a2 – 2ab + b2  

                      =  ( a – b ) ( a – b ).    

Note : The quadratic equation or binomial  ax2 + bx + c is a perfect square ; if b= 4ac.


Factorize the expressions using Identities:

1)      4x2 + 12xy + 9y2

Answer:

In the given expression 4x2 + 12xy + 9y

There are two variables: x , y and has three terms.1st , rd  terms are  Perfect squares.

The middle term has Positive sign.

1st  term : a2 = 4x2  ; a = 2x

rd  term : b= 9y2  ; b = 3y

Middle term (12xy)  = 2  *  1st term  * rd term = 2 * a * b

                      = 2 * 2x * 3y   = 12xy

By using the Square of Binomial Identity : 

(a + b ) =  a2 + 2 ab + b2  =  (a + b) ( a + b)

Therefore, factorization of : 4x2 + 12xy + 9y2

                                        = ( 2x + 3y ) 2

                                         = (2x + 3y) ( 2x + 3y).      

  

 2)      4x– 4x + 1

Answer:

In the given expression  4x– 4x + 1

There are two variables: x , y and has three terms.1st , rd  terms are  Perfect squares.

The middle term has Negative sign. 

1st term a2 = 4x2  ; a = 2x

3rd termb2 = 1; b = 1.

Middle term, (- 4x ) =  - 2 * 2x 1  =  - 4x  = 2 ab

By using the Square of Binomial Identity :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Therefore, factorization of 4x– 4x + 1

      = ( 2x – 1 )2   

      =  ( 2x - 1 ) ( 2x - 1).

 

3 ) w2 – 2w/x + 1/ x2

Answer:                                                   

The given expression is written as : w2 – 2w/x + 1/ x2 ;also 1st , rd  terms are  Perfect squares . The middle term has Negative sign. The expression is written as:

= w2 – 2 * w * 1/x + (1/x)2 ; it is in the form of :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Here, a = w , b = 1/x , ab = w/x ; 2 ab = 2w/x.

Therefore ; factorization of :w2 – 2w/x + 1/ x2

= ( w – 1/x)2

= ( w – 1/x)( w - 1/x) .

 

4) 1/t2 – 8/t + 16

 Answer:

The given expression is written as: 1/t2 – 8/t + 16 ;also 1st , rd  terms are  Perfect squares . The middle term has Negative sign. The expression is written as:

= 1/t2 – 2 * 1/t * 4 + 42  ; it is in the form of :

(a -  b ) =  a2  -  2 ab  + b= ( a – b)( a – b)

Here, a = 1/t ; b = 4 ; ab = 4/t ; 2 ab = 8/t .

Therefore ; factorization of : 1/t2 – 8/t + 16

= ( 1/t – 4 )2

= (1/t – 4)( 1/t – 4).

 

5) p2 + 169 +26p   

Answer:

The given expression is written as: p2 + 169 +26p ;rearranged as : p2 + 26p + 169     

In the given expression :1st , rd  terms are  Perfect squares . The middle term has Positive sign. The expression is written as:

= p2 + 2 *p * 13 + 132 ; it is in the form of :

(a + b ) =  a2 + 2 ab + b2  =  (a + b) ( a + b)

Here, a = p ; b = 13 ; ab = 13p ; 2ab = 26p.

Therefore; factorization of : p2 + 169 +26p   

= ( p + 13 )2

= ( p + 13 ) ( p + 13 ).



6) (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2          

Answer:

In this expression : (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2        

The number of terms are Three ,1st and 3rd terms are Perfect squares . The middle term has Positive sign.The expression is in the form of : a2 + 2 ab + b

1st term, a2 =  ( 3a – 5b )2 ; a = (3a – 5b)

3rd term, b2 = ( 2b – a )2 ; b =  ( 2b – a )

Middle term : 2 ab =  2 (3a – 5b)(2b –a)

By using the Square of Binomial Identity : 

(a + b ) =  a2 + 2 ab + b = ( a + b )( a + b )

Solving : ( a + b ) = (( 3a – 5b ) + ( 2b – a )) ,

                             = ( 3a – 5b + 2b – a ) = (2a – 3b )

Therefore, factorization of : (3a – 5b)2 + 2 (3a – 5b)(2b –a) + ( 2b – a )2

                                        =  ( ( 3a – 5b ) + ( 2b – a ) ) ;it is in the form:  ( a + b)2  

                                  =  ( 2a – 3b )2    ;   since : ( a + b = 2a - 3b )

                              =  (2a – 3b ) ( 2a – 3b) .     



No comments:

Post a Comment

Education Related Books

Society and Social Sciences Books

Maps and Atlases Books

Textbooks and Study Guides