My Blog List

Amazon Widget

Search This Blog

Monday, June 1, 2020

Face Value & Place Value


FACE VALUE & PLACE VALUE :

FACE VALUE :

·      Face value of a digit in a number is the digit itself.
·      Face value of a digit is always remains the same irrespective of the position where it is located.

 PLACE VALUE :

  1.  Each digit has a value depending on its place called the place value of the digit. 
  2.  Place value of a digit = ( face value of the digit ) * ( value of the place ). 


Example:  Write the Face value and Place value of a highlighted digit in the numbers.

1.      4,219 :

The Face value of the digit 2 is  2.
The Place value of the digit 2 is  200 .

(The digit  2 is in HUNDREDS  place,so we have to multiply the digit 2 with  its place value i.e; 100.Therefore the place value of the digit 2 becomes : 
digit * place value = 2 * 100  = 200) .

2.      7,641 :

The Face value of the digit 4 is  4.
The Place value of the digit 4 is  40. 

( The digit 4 is in TENS place ,therefore the digit is to be multiplied with its place value i.e; 10. 
Then the place value of the digit 4 becomes :
 digit * place value = 4 * 10 = 40).


3.    90,263 :
        
        The Face value of the digit 0 is  0.
        The Place value of the digit 0 is 0.
   
      In this number ,the place value of the digit 0 is also 0. 
    ( The digit 0 is in THOUSANDS  place.So, it is to be multiplied with its place value 1,000.
       Therefore the place value of digit 0 becomes:
       digit * place value = 0 * 1,000 = 0 ).

4.   8,62,134 :
     
      The Face value of the digit 4 is  4.
      The Place value of the digit 4 is 4.
     
      ( The digit 4 is in its ONES place.So, the digit 4 is multiplied with its place value : 1.
        Therefore the place value of the digit 4 becomes :
        digit * place value = 4 * 1 = 4 )  .  

  Note: The Face value & Place value of the digit  in a number is the digit itself.
             i: The  digit in the number is ZERO .
             ii: The digit is in its ONES place.

5.   7,51,695 :
  
      The  Face value of the digit 7 is 7 .
      The place value of the digit 7 is 7,00,000.

      ( The digit 7 is in its LAKHS place.Then the digit is to be multiplied by its place value 1,00,000.
        Therfore, the place value of the digit 7 becomes :
         digit * place value = 7 * 1,00,000 =  7,00,000).   

The below table represents Place Value and Face Value for different numbers:

 

NUMBER

  PLACE VALUE

FACE VALUE

  1346

    3 * 100= 300

      3

  3359

    9 * 1 = 9

      9

  7185

    7 * 1000 = 7000

      7

  6666

    6 * 10 = 60

      6

  8054

    0 * 100 = 0

      0


   

5 comments:

  1. Man I'm pradyumnan . Can you give me a couple of questions on identities factorisation

    ReplyDelete
  2. Factorise 2x^2+y^2+8z^2-2*root2xy+4root2yz-8zx

    ReplyDelete
    Replies
    1. Factorize: 2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz – 8zx
      Answer:
      In the given expression 2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz – 8zx
      The number of variables are three : x , y ,z
      By using the Square of a Trinomial : (a – b – c )2 = a2 + b2 + c2 – 2 ab + 2 bc – 2 ac
      1st term : a2 = 2x2 ; a = √2 x
      2 nd term : b2 = - 1 y2 ; b = - y
      3rd term : c2 = - 8z2 ; c = - 2√2 z
      4th term : 2ab = 2 * (√2 x) * (-y) = - 2 √2 xy
      5th term : 2bc = 2 * ( - y ) * (- 2√2 z ) = 4√2 yz
      6th term : 2ac = 2 * √2 x * (- 2√2 z ) = - 8zx
      Therefore , the expression :
      2x2 + y2 + 8z2 - 2√2 xy + 4√2 yz – 8zx is written as:
      = (√2 x - y - 2√2 z )2
      = (√2 x - y - 2√2 z)( √2 x - y - 2√2 z)

      Delete
    2. Square of trinomial Identity:
      (a + b + c )2 = a2 + b2 + c2 + 2 ab + 2 bc + 2 ac
      Therefore;
      (a – b – c )2
      = a2 + (-b)2 + ( -c)2 + 2 * a * (-b) + 2 *(-b)*(-c) + 2 * a * (-c)
      = a2 + b2 + c2 - 2 ab + 2 bc – 2 ac.

      Delete

Education Related Books

Society and Social Sciences Books

Maps and Atlases Books

Textbooks and Study Guides