My Blog List

Amazon Widget

Search This Blog

Thursday, June 18, 2020

Factorize using Cubes of Binomial Identity

FACTORIZE USING CUBES OF BINOMIAL IDENTITY:

1. Cube of a Binomial:

 (a + b)3  = a3 + 3a2b + 3ab2 + b3.

 ( a – b )3 = a3 – 3a2b + 3ab2 – b3.

2. Sum of Cubes:

a3 + b3  = (a + b) ( a2   - ab + b2 ) 

              = (a + b)3 – 3ab( a + b )

3. Difference of Cubes:

a3 – b3 = ( a – b )(a2 + ab + b2 ).

            = ( a – b )3 + 3ab ( a – b )

 

Factorize the following:

 1)  (2x – 2/x)3

Answer:

 The given expression: (2x – 2/x)3 ; is in the form of : ( a – b )3  .

Here,  a = 2x ; b = 2/x .

Substituting a , b  values in the Cube of Binomial Identity :

 ( a – b )3 = a3 – 3a2b + 3ab2 – b3.

= (2x – 2/x)3

=  (2x)3 – 3 * (2x)2 * (2/x) + 3 * (2x) * (2/x)2 – (2/x)3

=  8x3 – 3 * 4x2 * 2/x +  3* 2x * 4/x2 – 8 / x3

=  8x3 – 24x + 24/x – 8/x3 .

 

2) 2x3 – 54

Answer:

In  the given expression: 2x3 – 54; if we take out number ‘2’ as common , the expression changes in to : 2 ( x3 – 27 ) = 2 ( x3 – 33  ) as we know 27 = 33  and the new expression is in the form of : Difference of Cubes.

 The Difference of Cubes Identity :  a3 – b3 = ( a – b )(a2 + ab + b2 ).

 Here, a = x ; b = 3 .

 a2  = x2 ; b2 = 32 = 9 ; ab = 3x .

Therefore, 2 ( x3 – 33  )

= 2 ( x – 3 ) ( x2 + 3x + 32 ).

= 2 (x-3)( x2 + 3x + 9 ).

    ( OR )

Substituting a,b values in  :( a3  b3 ) =  ( a – b )3 + 3ab ( a – b )

Therefore , 2 ( x3 – 33  ) becomes

= 2 (( x – 3 )3 + 3 * 3x ( x- 3 ) ).



3) If  x =1  + √ 2; then find ( x – 1/x )3 ?

Answer:

Here,  we need to find ( x – 1/x )3  ,  which is in the form of : ( a – b )3 .

First we have to solve the given expression :

 ( x – 1/x )3  = (  ( x-1) / x)3

Substituting the given ‘ x’value in the expression:

= ( ( 1 + √ 2 - 1)  / (1  + √ 2) )3

= ( √ 2 /(1  + √ 2)3 ) ; the denominator is in the form of  Cube of Binomial Identity

( a + b )3 = a3 + 3a2b + 3ab2 + b3.

Here,(1  + √ 2)3 expression: a = 1 ; b= √ 2

= 13 + 3* 12* √ 2 + 3* 1 * (√ 2)2 + (√ 2)3

= 1 + 3√ 2 + 6 + 2 √ 2 

= (5 √ 2 + 7 )  ; substituting in ( √ 2 /(1  + √ 2)3 ) , then

 ( √ 2 / (1  +√ 2 )3 ) = ( √ 2 /( 5√ 2 + 7); multiplying numerator and denominator with 

(5√ 2 -7 ),i.e: rationalizing. Hence :

= ( √ 2 * (5 √ 2 - 7) / (5 √ 2 + 7) *( 5 √ 2 -7) ); denominator is in the form of Difference of squares Identity : (a+b)(a-b) = a2 – b2 .

= ( (10 - 7√ 2 ) / ( 50 – 49)

=  ( (10 - 7√ 2) / 1 )

=  10 - 7√ 2.



No comments:

Post a Comment

Education Related Books

Society and Social Sciences Books

Maps and Atlases Books

Textbooks and Study Guides