CUBES OF TRINOMIAL IDENTITY :
a3 + b3 + c3
= ( a + b + c )( a2 + b2 + c2 – ab – bc – ca )
+ 3abc
.
If ( a
+ b + c ) = 0 ; then a3 + b3 + c3 = 3 abc .
Factorize the expressio using Algebraic Identities:
1) ( a - b)3 + ( b – c )3 + ( c – a )3
Answer:
The
given expression: ( a - b)3 + ( b – c )3 + ( c – a )3
; is in the form of : a3 + b3
+ c3
Here; a =
a – b ; b = b – c ; c = c – a .
By
using the Cubes of Trinomial Identity :
a3 + b3
+ c3 = ( a + b + c )( a2 + b2 + c2
– ab – bc – ca ) + 3abc ;
If a + b + c = 0 ,then a3 + b3 + c3
= 3 abc
substituting a, b , c values in the above Identity we get:
a
+ b + c = a – b + b – c + c – a = 0;
(
a - b)3 + ( b – c )3 + ( c – a )3
= 0 + 3 ( a-b)*( b-c) * (c-a)
=
3 (a-b)(b-c)(c-a).
2)
x3 + y3 - 3xy +1.
Answer:
The
given expression : x3 + y3 - 3xy +1 , can be re-write as;
=
x3 + y3 + 13 – 3* x * y * 1 ; which is in the
form of
a3 + b3
+ c3 – 3abc = ( a + b + c )( a2 + b2 + c2
– ab – bc – ca )
Here,
a =x ; b = y ; c = 1 ; a2 = x2 ; b2 = y2 ; c2
= 1 ; ab= xy ; bc = y ; ca = x
Therefore
; x3 + y3 + 1
– 3 xy
=
( x + y + 1 ) (x2 + y2 + 1 – xy – y – x )
=
( x + y + 1 ) (x2 + y2 – xy –y – x + 1).
3)
8x3 + 27y3 – 90xy + 125
Answer:
The
given expression : 8x3 + 27y3 – 90xy + 125 , can be rewrite
as :
=
8x3
+ 27y3 + 125 – 90xy
= ( 2x)3 + ( 3y)3 + 53 - 3 * 2x * 3y * 5 ; which is in the form of
a3 + b3
+ c3 – 3abc = ( a + b + c )( a2 + b2 + c2
– ab – bc – ca )
Here,
a = 2x ; b = 3y ; c= 5 ; a2 = 4x2 ; b2 = 9y2
; c2 = 25
ab
= 6xy ; bc = 15y ; ca = 10x.
Therefore
; 8x3 + 27y3 + 125
– 90xy
=
( 2x + 3y + 5 )( 4x2 + 9y2 + 25 – 6xy – 15y – 10x)
=
( 2x + 3y + 5 )( 4x2 + 9y2 - 6xy – 15y – 10x + 25 ).
No comments:
Post a Comment