My Blog List

Amazon Widget

Search This Blog

Tuesday, June 16, 2020

Factorizing using Cubes of Trinomial Identity

 CUBES OF TRINOMIAL IDENTITY :

 a3 + b3 + c3 = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca ) +  3abc  .

 If  ( a + b + c ) = 0 ; then a3 + b3 + c3 = 3 abc .


 Factorize the expressio using Algebraic Identities:

1)  ( a - b)3 + ( b – c )3 + ( c – a )3

Answer:

The given expression: ( a - b)3 + ( b – c )3 + ( c – a )3 ; is in the form of  : a3 + b3 + c3

Here;  a = a – b ; b = b – c ; c = c – a .

By using the Cubes of Trinomial Identity :

a3 + b3 + c3 = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca ) +  3abc ;

 If a + b + c = 0 ,then  a3 + b3 + c3 = 3 abc

substituting  a, b , c values in the above Identity we get:

a + b + c = a – b +  b – c + c – a  = 0; 

( a - b)3 + ( b – c )3 + ( c – a )3

=  0 + 3 ( a-b)*( b-c) * (c-a)

= 3 (a-b)(b-c)(c-a). 


2)  x3 + y3 - 3xy +1.

Answer:

The given expression : x3 + y3 - 3xy +1 , can be re-write as;

= x3 + y3 + 13 – 3* x * y * 1 ; which is in the form of

a3 + b3 + c3 – 3abc = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca )

Here, a =x ; b = y ; c = 1 ; a2  = x2  ; b2 = y2 ; c2 = 1 ; ab= xy ; bc = y ; ca = x

Therefore ;  x3 + y3 + 1 – 3 xy

= ( x + y + 1 ) (x2 + y2 + 1 – xy – y – x )

= ( x + y + 1 ) (x2 + y2 – xy –y – x + 1).

 

3) 8x3 + 27y3 – 90xy + 125

Answer:

The given expression : 8x3 + 27y3 – 90xy + 125 , can be rewrite as :

=   8x3 + 27y3 + 125 – 90xy

=  ( 2x)3  + ( 3y)3 + 53  - 3 * 2x * 3y * 5 ; which is in the form of

a3 + b3 + c3 – 3abc = ( a + b + c )( a2 + b2 + c2 – ab – bc – ca )

Here, a = 2x ; b = 3y ; c= 5 ; a2 = 4x2 ; b2 = 9y2 ; c2 = 25

ab = 6xy ; bc = 15y ; ca = 10x.

Therefore ;  8x3 + 27y3 + 125 – 90xy

= ( 2x + 3y + 5 )( 4x2 + 9y2 + 25 – 6xy – 15y – 10x)

= ( 2x + 3y + 5 )( 4x2 + 9y2  - 6xy – 15y – 10x + 25 ).


No comments:

Post a Comment

Education Related Books

Society and Social Sciences Books

Maps and Atlases Books

Textbooks and Study Guides